Road slipperiness detection based on dynamic vehicle data

PIARC TC 2.4 Workshop, 11th March 2015, Helsinki
Mobile road surface condition measurements in winter
Renne Tergujeff et al
VTT Technical Research Centre of Finland
Agenda

- Need for supporting road safety
- Detecting road slipperiness
- Prototype implementation
- Road ahead
Need for supporting road safety
Road safety

- EU: approximately 30,000 fatalities and 1.5 million injuries are reported yearly in road accidents, leading to annual costs in the scale of 130 billion €.

- WHO: road traffic injuries are the leading cause of death among people 5–29 years old (WHO European Region).

- In EU, a key development target is to significantly reduce traffic accidents caused by poor road conditions.

- Societal need to improve safety, reducing losses of lives and serious injuries.
Road slipperiness

- In Finland, poor weather conditions and slipperiness contribute to 20–25% of traffic fatalities and approximately 260 M€ costs per year (fatalities and injuries).

- **Accident risk in snowy or icy conditions** has been estimated to be over 4 times that of normal bare pavement road conditions.
 - In fatal accidents, the risk in road conditions of loose snow or slush estimated as nearly 5 times that of normal conditions.
Regulatory drivers

- **Strong regulatory drivers** in EU make it a priority to develop and more widely adopt new methods of detecting slipperiness on the roads.

 - EC regulation C(2013) 2550 calls for providing a real-time location-specific warning to drivers about temporary slippery road conditions.

 - The Commission also expects its member states to reduce road accidents by 50% between the years 2010 and 2020 (*COM*(2010) 389).
Detecting road slipperiness
Information sources

- Temperature measurements and weather modelling

- Stationary roadside sensors
 - Optical sensors (infrared)

- Mobile add-on sensors
 - Measuring wheels on friction trailers
 - Braking traction test devices
 - Optical sensors (infrared)
 - Carry-on sensors, e.g. mobile phones

- Analysis of in-vehicle data
Road slipperiness detection: GRIP

• Novel method for detecting road slipperiness, based on analysing several primary feeds of data available in the vehicle controller area network (CAN).

• **Real-time monitoring and analysis** in various driving situations:
 • Difference in the running speeds of pulling axle vs. freely rotating axle(s)
 • Operational engine data, primarily the engine running speed and torque

• Based on direct measurement of wheel slip.

• No additional sensors, regular maintenance or other driver activities required.
Properties

• Produces localized and real-time slipperiness data on a continuous scale
 • Also on constant speed road sections
 • No requirement for significant acceleration/deceleration

• Sensitive to small changes in traction during normal driving
 • Even when the driver is not yet aware of the change in conditions
 • Operates below the threshold levels of driver assistance systems such as ABS, ESC and TCS

• Unique combination of properties:
 • Low operational cost
 • Continuous monitoring
 • Precision and reliability
 • Information specificity
Scaling

- Low cost enables scalability to large vehicle fleets
- Large fleets make possible a road slipperiness information service with wide coverage
- Utilization in e.g. winter road maintenance, direct road slipperiness warnings and commercial value-added services
Exploitation and applications

Allows cost-effective and scalable provision of accurate and specific road slipperiness data with wide geographical coverage.

Potential information utilizers:
• Public authorities
• Maintenance operators
• Road weather service providers
• Navigation service providers
• Vehicle manufacturers
• Transport operators
• Insurance companies
Prototype implementation
Vehicle implementations

- **Implemented as software in various types of vehicle computers**
 - Real-time collection of CAN and GPS data
 - Data processing and analysis
 - Connectivity (GPRS, 3G etc.) with server-side system

- **Tested and proven in practice**
 - With up to 40 vehicle truck fleet
 - Correlation with driver opinions and official friction measurements

- Currently also being tested in Helsinki Region Transport (HSL) buses and a road maintenance vehicle

- **Heavy vehicles optimal**
 - High sensitivity to changes in slipperiness
 - Large quantity of existing vehicle computers with the needed properties
Prototype system and services

- **Server-side system** for data management and calibration of observations

- **Warning system** for drivers approaching dangerously slippery road sections
 - Simple LED signal based information system in the truck cockpit

- **Map visualization** for situation awareness

- Data interfaces planned
Visualization example

- An example: analysed slipperiness on the road network of Southern Finland on Dec 2, 2013.
- Slipperiness level is indicated by colour coding.
- Size of the dot indicates the number of observations in the area.
Development status

- Data from each vehicle is automatically calibrated.
- Data from various vehicle types is cross-calibrated to gain solid understanding of slipperiness levels.
- **Status:** a functioning road slipperiness detection system for heavy vehicles and accompanying prototype services.
- Recent development includes method optimization for commercial deployment.

Road slipperiness detection based on dynamic vehicle data
Road ahead
Industry interest

Volvo, 19 March 2014:
“Volvo Car Group (Volvo Cars), the Swedish Transport Administration (Trafikverket) and the Norwegian Public Roads Administration (Statens Vegvesen) are joining forces in a pilot project in which road friction information from individual cars is shared within a cloud-based system.”

Nokia, 5 May 2014:
“Nokia today announced the launch of a USD 100 million Connected Car fund to be managed by Nokia Growth Partners (NGP). The fund will identify and invest in companies whose innovations will be important for a world of connected and intelligent vehicles.”

Picture: Volvo press release
Kauppalehti, 9 March 2015:
Up-to-date information to road keepers from truck tyres
A method measuring tyre traction warns the truck driver about a slippery bottom of the hill and sends the information also to the road keeper.
Research and development items

- **Research and development items**
 - Passenger cars as data providers
 - Universal data provision; tackling the variety in data bus implementations
 - Driver notifications, communication channels and interaction
 - Operation model and value networks
 - Ensuring data quality and privacy protection

- **Pilot cooperation** prepared with
 - Helsinki Region Transport
 - City of Helsinki Public Works Department
 - The Finnish Road Weather Excellence project
 - COSMOS project / IoT programme of industry consortium Digile

Road slipperiness detection based on dynamic vehicle data
Data provision and value exchanges

- **Vehicle fleets** are employed to collect the data, in a closed environment of data producers and users, or as part of a larger ecosystem of information and services.

- **Fleet owners** are in a crucial role as data producers. To function, the operational model needs to generate value to the fleet owners. Options:
 - Free or low-cost information service that includes the produced road slipperiness information / warning service; reduced costs due to accidents.
 - Direct benefit from selling the generated data to a service provider.
Summary

• GRIP: Road slipperiness detection based on real-time analysis of primary data feeds in the vehicle data bus

• Slipperiness determined during normal driving, with no additional sensors
• Operates below the threshold levels of driver aid systems
• Developed and tested in up to 40 vehicle fleet of trucks and buses
• Research interests in wide-scale piloting and passenger car utilization
• Working to partner for commercialization – ongoing discussions

Thank you for your attention!
• See video at YouTube (2:33 min)
• Contact: renne.tergujeff@vtt.fi
TECHNOLOGY FOR BUSINESS